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Abstract

This work studies the stability of the toroidicity-induced Alfvén Eigenmodes (TAE) in the proposed ITER

burning plasma experiment, which can be driven unstable by two groups of energetic particles, the 3.5MeV

α-particle fusion products and the tangentially injected 1MeV beam ions. Both species are super-Alfvénic

but they have different pitch angle distributions and the drive for the same pressure gradients is typically

stronger from co-injected beam ions as compared with the isotropically distributed α-particles. This study

includes the effect of anisotropy of the beam ion distribution function on TAE growth rate directly via the

additional velocity space drive and indirectly in terms of the enhanced effect of the resonant particle phase

space density. For near parallel injection TAEs are marginally unstable if the injection aims at the plasma

center where the ion Landau damping is strong, whereas with the off-axis NBI the instability is stronger

with the growth rate near 0.5% of TAE mode frequency. In contrast, for perpendicular beam injection TAEs

are predicted to be stabilized in nominal ITER discharges.

In addition, the effect of TAEs on the fast ion beta profiles is evaluated on the bases of a quasi-linear

diffusion model which makes use of analytic expressions for the local growth and damping rates. These

results illustrate the parameter window that is available for plasma burn when TAE modes are excited.
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I. INTRODUCTION

The Toroidal Alfvèn Eigenmodes (TAE’s) [1–4] destabilized by fast ions can cause significant

difficulties for the containment of energetic alpha particles in fusion energy generating tokamak

experiments. Experimentally it is also known that various conditions can be obtained with varying

degrees of severity. The modes can be stable, or unstable where energetic particle loss is insignif-

icant [5, 6]. However it was established that in the presence of a strong enough energetic particle

energy density these modes will induce large losses of fast particles.

In the proposed ITER fusion experiment, 1MeV neutral beam injection (NBI) is planned for

current drive and auxiliary heating [7]. The neutral beams will be injected in the direction of the

plasma current and will create an anisotropic distribution of super-alfvénic beam ions, which will

drive TAEs unstable with partial growth rate contributions that are comparable to the contribution

from fusion alphas [8]. In this reference it was found that for a nominal ITER experiment oper-

ating, with the central temperature at 20keV , the plasma would be marginally unstable to alpha

particle TAE instability. An initial study of the beam ion contribution to the TAE drive showed

that the beams were an additive contribution to the alpha particle instability. In addition it was

shown that the anisotropy in the beam ion distribution function results in an additional velocity

space drive. Since the beam ion contribution is significant it is important to carefully evaluate this

mechanism and, if possible, find a TAE stable plasma parameter domain.

The purpose of the first part of the paper is to determine the effect of beam ions with an

anisotropic distribution function on the linear instability of TAE’s under burning plasma con-

ditions. We use the perturbative NOVA/NOVA-K codes [9, 10], which were successfully em-

ployed to predict the thresholds and frequencies of medium-n TAE instabilities in various exper-

iments including the beam heated deuterium-tritium experiments on TFTR [11, 12]. Recently

NOVA/NOVA-K codes were successfully used to explain high-n odd core localized TAEs ob-

served in ICRH JET discharges [13]. In these codes the procedure used is to first obtain the lowest

order mode structure using the ideal MHD NOVA code which neglects damping and drive sources.

Then the NOVA-K code incorporates these sources through a perturbative procedure by evaluating

corresponding integrals over the known eigenfunctions. At moderate- to high-n’s the lowest order

TAE mode often extends over the entire minor radius. When the continuum is not excited in the

regions where amplitude of the eigenmode is significant, the global structure of the TAE mode

can then be used as a lowest order approximation to the eigenmode. Then the beam ion drive
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and other numerous damping mechanisms are incorporated in a perturbative manner to predict

stability. All equilibrium plasma parameters and profiles are obtained by employing the transport

code TRANSP [14]. In this paper we analyse details of TAE stability for one of the most unstable

toroidal mode numbers, n = 10, to examine the sensitivity to NBI injection characteristics, such

as geometry and energy.

One can expect TAE unstable plasmas to still produce tolerable reactor performance if only

moderate alpha transport is induced that primarily redistributes the alpha particle profile inside the

plasma rather than cause direct losses to the plasma facing walls. The strength of the redistribution

should depend upon how far above the marginal threshold the modes are excited, among other

factors. We propose a model in Section VI in which the local TAE stability theory is applied to

reconstruct the selfconsistent fusion alphas beta profiles on the bases of a quasi-linear diffusion

model. This model makes use of expressions for the local growth and damping rates and calculates

the relaxed alpha particle profiles by imposing the particle conservation condition for the steady

state.

II. ITER PLASMA MODELING

Equilibrium plasma profiles of the ITER nominal discharge are calculated by the transport code

TRANSP [14] and are presented in Fig. 1, where the plasma density, safety factor, alpha particle

and beam ion beta profiles are plotted as functions of minor radius variable r/a ≡
√

Φ, where Φ

is the toroidal magnetic field flux, normalized to 1 at the plasma edge and 0 at the plasma center.

Other plasma parameters we use are: a major plasma radius of the geometrical center of R0 =

6.2m, a minor radius of the last magnetic surface of a = 2m, a deuterium negative NBI injection

power PNBI = 33MW at an energy Eb0 = 1MeV , a vacuum magnetic field at the geometrical axis

of B0 = 5T , a total central beta value of β0 = 6.7% and ion and electron temperatures in the

center at Ti0 = 19.5keV and Te0 = 23.5keV respectively. The injection geometry is taken from

the ITER design [15] and is slightly different from the one used in previous calculations [8, 14],

which results in up to approximately 50% lower fast ion beta values. These parameters were input

to TRANSP simulations where NBI was applied tangentially 0.55m below the magnetic axis.

Note that the resulting safety factor profile has a region of lower shear at r/a ∼ 0.5 because the

proposed NBI and ICRH modify the current density profile. The low shear region turns out to be

an important for the stability considerations of global TAEs.
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This set of plasma parameters corresponds to one of the more unstable cases we have consid-

ered. In this case the beam injection produces hollow beam beta profile and a strong pressure

gradient in the region r/a ∼ 0.5, which is the region where the damping is relatively weak, which

allows TAEs to be excited (more details are given below).

(      )

( 
   

  )

Figure 1: Plasma profiles for the ITER plasma equilibrium (left plot) and corresponding magnetic surfaces

(right plot) as predicted by TRANSP code. On the left plot shown are the beam beta βb(%), the fusion

alphas beta βα(%), safety factor q and the electron density ne(1014cm−3).

In addition to case (1) with 0.55m off-axis NBI, three other injection configurations have been

studied (cases (2), (3), and (4)) as shown in figure 2. In all these cases the plasma beta was fixed

at a beta value that is characteristic of the value expected by the constraint that the discharge be

MHD stable. Cases (2) and (3) are for fixed Ti0 = 19.5keV , with case (2) with on-axis injection

while case (3) is for 0.35m off-axis. The third additional case is for a higher ion temperature,

Ti0 = 25.3keV and on-axis NBI.

A. NBI ion anisotropic distribution function

Since the beam injection creates an anisotropic beam ion distribution function, one needs to

model it carefully due to its potentially strong effect on TAE stability. In this study we develop a

model for the co-injected (as proposed for the ITER design) beam ion slowing down distribution

function and a Gaussian in pitch angle dependence centered at some average value, χ0, where
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Figure 2: Equilibrium beam beta profiles in four ITER plasmas under the consideration. Curves 1,2, and 3

are for the plasma ion temperature Ti0 = 19.5keV , and injection geometry aiming with vertical shift 0.55m,

0.35m, and 0m, respectively, with the respect to the equatorial plane. Curve 4 corresponds to the on-axis

NBI at plasma temperature Ti0 = 25.3keV .

χ ≡ v‖/v is the pitch angle taken at the equatorial plane at the low field side of the plasma cross

section. We will see that this model captures the main physics relevant for AE stability analysis

and which appears to be consistent with the results obtained from the Monte-Carlo post-processor

of the TRANSP code [14].

If NBI generates a narrow pitch angle distribution it can be modeled in the following form:

fb =
fχ (χ,v,r)

v3 + v3∗

C(r)
δχ(v.r)

, if v < vb0, (1)

and fb = 0 if v > vb0, where fχ (χ,v,r) ≡ e−(χ−χ0)
2/δχ(v,r)2

, δχ2 � χ2
0 is assumed. In this formula

δχ is the width of the pitch angle distribution function, v∗ is the critical velocity at which the ion

collisional drag becomes comparable with the drag on electrons, vb0 is the injection velocity, C(r)

is the normalization function. As we take the ions to be injected in the passing region parallel to

the current flow χ0 > 0, the trapped and the and passing particles that flow in the direction opposite

to the plasma current only appear in the plasma due to Coulomb collisional scattering. Special care

is then needed in how we account for such particles in the distributions we study. To high accuracy

this distribution function obeys the steady solution in terms of the integrals of motion (IOM) of

the drift kinetic equation, e.g. see [16]). The selection of the equation needs special consideration

to be compatible with the collisional slowing down process. In general this problem needs to be

solved numerically, which is a difficult problem beyond the scope of this paper. Instead we select
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a distribution functional form that qualitatively captures the effect of collisions. Note that fb is a

function of a particle’s IOM, since χ at the low field side can be expressed in terms of IOM. The

pitch angle width δχ(v,r) changes as fast ions slow down due to the Coulomb scattering [17, 18].

The form of δχ(v,r) can be straightforwardly derived by noting that while beam ions slow down

they experience Coulomb scattering with a pitch angle scattering diffusion coefficient given by

Dχχ ' v3
∗/v3τse. The problem can be reduced to the following equation

∂ f
∂τ

= Dχχ
∂2 f
∂χ2 +δ(χ−χ0)θ(τ− τ0) , (2)

where dτ = dvv2/
(

v3 + v3
∗
)

, θ is the step function, and τ0 = τ|v=v0
. Here we assumed that the

injection is at a single pitch angle χ0. Simultaneously the particle velocity is determined from the

velocity drag and it is found to satisfy

v3 =
(

v3
∗ + v3

b0

)

e−3t/τse − v3
∗, (3)

where τse is the ion slowing down time due to collisions with electrons. At a given time the pitch

angle width is broadened according to equation δχ2 = δχ2
0 +

∫ t
0 Dxxdt, where δχ0 is the initial

width due to ion finite orbit width (FOW) and plasma aspect ratio effects. Thus it follows that the

width is given by

δχ2(v,r) = δχ2
0 −

1
3

ln

[

v3
(

1+ v3
∗/v3

b0

)

v3 + v3∗

]

. (4)

The center of the pitch angle Gaussian distribution function, χ0, is computed by taking the first

moment of the numerical distribution function generated by TRANSP. In the case analyzed we

obtained χ0 ' 0.8 near the region of interest. i.e. r/a ' 0.5 and χ0 does not change significantly

in the vicinity of the TAE location.

Figure 3(a) shows contours of constant f for the distribution function generated by TRANSP

and the numerical pitch angle distribution widths δχ2, are shown in figure 3(b) along with the

widths fitted to the analytic results,

δχ2(v,r) = δχ2(v) = 0.015− 1
3

ln

[

(v/vb0)
3 1.275

(v/vb0)
3 +0.275

]

. (5)

In making a fit to the numerical width we used velocity parametric dependence whereas other

coefficients were computed. Here the minor radius dependence can be neglected within the mode

location. Eq.(5) implies that v2
∗/v2

b0 = 0.423, which is typical predicted value for ITER.
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Figure 3: Contours of constant distribution function of beam ions (a) taken at the low field side of the plasma

cross section and averaged over 0.5 < r/a < 0.6. Figure (b) shows the pitch angle width of the beam ion

distribution function versus particle energy at two minor radii r/a = 0.5 and 0.6. These plots are compared

favorably with the widths resulting from the analytic model (dashed curve) given by Eq.(1).

If the pitch angle width becomes large, the above χ dependence of the distribution function

needs to be modified. Consider three regions: (I) positive passing ions χs+ < χ < 1, where χs+

is the pitch angle at the separatrix between the co-moving (with respect to the plasma current)

passing and the trapped ones; (II) trapped ions χs− < χ < χs+; and (III) negative passing ions

−1 < χ < χs−, where χs− refers to the separatrix between the counter-moving passing and trapped

ions. In the case of a large aspect ratio plasma χs+ = −χs− =
√

2ε. If we relax the boundary

condition at χ = −1 we can then satisfy the boundary condition for the particle flux near the

separatrix by the method of images. The flux condition requires that the fluxes in and out the

separatrix region are equal:

∂ f (χs+ + ε)
∂χ

τ+ =
∂ f (χs−− ε)

∂χ
τ− +

∂ f (χs+− ε)
∂χ

τ+ +
∂ f (χs− + ε)

∂χ
τ−,

where τ+ is the part of trapped particle drift orbit period containing particle positive parallel ve-

locity, and τ− corresponds to the rest of particle orbit. In the above condition for fluxes we also

assumed that the separatrix dependence on velocity is weak. In the following we present the

derivation for the case of large aspect ratio plasma without fast ion orbit effects, in which τ− = τ+,

the flux condition equation reads f ′ (χs+ + ε) = f ′ (χs−− ε)+ 2 f ′ (χs+− ε), and we require that

the trapped ion distribution function inside the region II is even in χ.

Since the possible pitch angle range is bounded by |χ| < 1, image particle sources can be

introduced in order not to have diffusive fluxes at the boundaries. In that case the distribution
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function satisfies the physical requirement of zero derivative at the boundary

fχp (χ) = φ(χ) ≡ e−(χ−χ0)
2/δχ2

+ e−(χ−2+χ0)
2/δχ2

, (6)

where two terms correspond in the right hand side correspond to curves 1 and 2 shown in Fig. 4.

Since particles are diffusing out of the region I an image sink needs to be introduced. In regions

II and III image sources at half the actual source strength adequately represent the solution. Thus

we finally obtain

fχ =



















φ(χ)− 1
2 φ(2χs+−χ), region I

1
2 φ(−χ)+ 1

2φ(χ), II
1
2φ(2χs+ +χ), III

. (7)

The procedure described is valid for a broad range of pitch angles width and the truncation only

becomes invalid at late times when it is necessary to account for collisional fluxes resulting from

multiple reflections from the confinement boundaries. In this case one can in principle add an

infinite series of images (or solve Eq.2, with the correct boundary conditions, numerically or ana-

lytically using a Fourier representation) to obtain to a more isotropic-like solution. In our analysis

such an addition it is not required because fast ions at energies such that δχ ∼ 1, are typically

out of resonance with TAEs, a result that is confirmed by numerical analysis. For negative χ0 the

model is essentially the same as what has been described, whereas for the case of perpendicular

injection, i.e. χ0 < χs the disctribution function can be constructed as fχ = [φ(χ)+φ(−χ)]/2 for

all χ regions.

The normalization function C (r) in Eq.(1) is calculated by taking the radial profile of beam ion

beta from the TRANSP analysis code and integrating v2 fb/2 over the velocity space to construct

the local value of beta βb(r). We find βb (r) =
(

23πmb/3B2
0

)
∫

v2 f d3v , which implies

C (r) =
3B2

0βb (r)

25π5/2Eb0

{

1
2

+
v2
∗

6v2
b0

ln

[

(vb0 + v∗)
3

v3
b0 + v3∗

]

+
v2
∗√

3v2
b0

arctan

[

v∗−2vb0√
3v∗

]

−
√

3πv2
∗

18v2
b0

}−1

(8)

The above calculations were performed to lowest order aspect ratio where toroidicity effects are

ignored. As we show this result is compatible locally with the one obtained by TRANSP in the

equatorial plane, θ = 0. We expect that this result is also compatible with the TRANSP beam beta

radial profiles, which is an average over the poloidal angle. This is because the NBI is close to

tangential and the beam ion drift orbit radial width is small.
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Figure 4: Results of modeling the beam ion pitch angle distribution function as given by Eq.(7) (curve 4)

and its comparson with the TRANSP simulation (curve 5). The different pitch angle regions correspond to

(I), co- passing beam ions; (II), trapped ions and (III), and counter- passing ions. In this case we used the

low aspect ratio approximation for parameters δχ = 0.37 and r/R = 1/6. Also shown are different terms

for the model distribution function in region I: curves 1 and 2 correspond to first and second terms in the

right hand side of Eq.(6), wheras curve 3 is the the sink term (second term of Eq.(7) for region I).

III. TAE STABILITY ANALYSIS

A. NOVA eigenmode analysis

In a previous numerical study Ref.[8] the domain of the most unstable TAE toroidal mode

numbers (n = 7− 20) in a nominal ITER plasma was computed using the global hybrid kinetic

code NOVA-K. In this paper the fast ion beta estimate is somewhat lower than used in used Ref.[8]

due to both a change in the injection geometry and the use of a better NBI confinement model in

the TRANSP code. Hence, as the near-threshold stability analysis is sensitive to the fast ion beta

we repeat the toroidal mode number scan similar to the one presented earlier. The results are

shown in Fig. 5 for the nominal ITER plasma with on-axis NBI. We observe that due to the lower

beam and alphas beta values the range of unstable n-values only spans from 7 to 12 for the case

when both alpha particle and beam ion drives are included. It can be seen that TAEs are near

threshold, and alpha particles alone do not seem be sufficient to destabilize TAEs. As a measure of
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how close we are to marginal stability we note that from table I (to be descussed hereafter) one can

see that the growth rate from alphas and beams for n = 10 is ∼ 1.5% of the eigenmode frequency

compared to ∼ 0.3% for the predicted growth rate when damping is accounted for.

0 5 10 15 20 25
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

n

γ/
ω

(%
) unstable

stable

NBI ions and alphas   
alphas only 

Figure 5: Toroidal mode number dependence of the TAE growth rates for the cases with the drive from

alpha particles only (squares), and with the drive from both NBI ions and alpha particles (diamonds).

In this section we analyze in details the TAE stability for one of the most unstable toroidal

numbers, n = 10, in order to examine the sensitivity of the NBI drive to the injection character-

istics, such as geometry and energy. The toroidicity and ellipticity induced gaps in the Alfvén

continuum are calculated and are shown in figure 6 for the nominal ITER plasma discharge with

0.55m off-axis NBI [7, 14]. The normalized frequency is Ω = ωq1R0/vA0, where vA0 is the central

Alfvén velocity, q1 is the edge value of the safety factor, and R0 is the major radius of the geo-

metrical center. The center of the TAE gap envelope is proportional to the dependence 1/q
√

ne,

so that in tokamaks often the gap is nearly aligned along the minor radius, thereby allowing the

TAE mode to span along a large portion of the minor radius without strongly interacting with the

continuum. This was observed in present day experiments when a more open gap corresponds

to MHD activity in the TAE frequency range (see for example Ref.[19–21]), whereas the plasma

with the closed gap did not show such activity. The TAE gap in Fig. 6 is aligned except at the very

edge due to strong variation of the safety factor towards the edge and flat density profile. This may

result in TAE damping for global low-n modes. In the present work the continuum damping is not

included.
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Figure 6: Alfvén continuum with gaps due to toroidal (TAE gap) and poloidal (EAE gap) coupling for

n = 10 as calculated by NOVA code.

The NOVA-K hybrid code predicts n = 10 TAEs to be unstable in this ITER example if both

the alpha particle, γα, and beam ion, γbeam, drives are combined. Among the various damping

mechanisms that significantly reduce the drive are ion Landau damping, γiLand , radiative damping,

γrad , and trapped electron collisional damping, γecoll . The sum of damping and drive terms is

plotted in figure 7 versus what we call the NBI impact parameter, ∆ZNBI , which is the vertical

deviation from the magnetic axis of the beam injection line. For each case, up to two eigenmodes

are unstable. The more the beam is directed off-axis the stronger the drive is. This is because

during the on-axis NBI, beam ion beta builds up near the plasma center (see Fig.2), where the ion

Landau damping is very strong. With the off-axis NBI the region of the strong beta gradient is

shifted outward to the middle of the minor radius (for example 0.55m off-axis, Fig. 2), so that

both central ion Landau damping and edge trapped electron collisional damping are decreased.

At the higher ion temperature case, Ti0 = 25.3keV , the fusion beta is larger which enhances alpha

particle destabilization of the TAE instability. However even in that case, where βα0 ' 1.33%,

the pure fusion alpha-particle instability seems to still be marginally stable for n = 10. However,

with NBI present, the instability drive is strong enough to cause instability, with the growth rates

for the most unstable mode at γ∑/ω = 0.55%. The contribution to the drive from alphas or beam

ions is typically ∼ 1− 3%, which is with damping included, probably sufficiently small for the
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perturbation approach to be adequate.
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Figure 7: Found n = 10 unstable TAE growth rates as functions of NBI impact parameter (vertical deviation

from the magnetic axis).

As an example we present the stability properties of one of the most unstable n = 10 TAEs for

0.55m off-axis NBI. The radial structure of poloidal harmonics of this mode is presented in figure

8 versus the minor radius, which is defined as r/a ≡
√

ψ/ψ0, where ψ is the poloidal magnetic

flux, ψ0 is the flux at the plasma edge, and we assumed ψ = 0 at the magnetic axis. By comparing

figures 6 and 8 one can notice that the mode is located in the gap with only a weak interaction

with the continuum on the left. At that point its amplitude is small which means that continuum

damping is expected to be small [22, 23]. As the output of the TRANSP code shows, because

of the neutral beam current drive, there is a low shear region at 0.4 < r/a < 0.6 near the mode

resonance with the Alfven continuum, where s < 0.3. This implies that the “propagation” of TAE

“couplets” into the center can be weak, with the result of low continuum damping γ/ω < 0.001

[23]. Table I lists the calculated damping mechanisms and drive terms due to alpha particles and

beam ions at Eb0 = 1MeV . Though the beams are at lower beta value than the alpha particles,

their drive is comparable due to their anisotropy at a fixed energetic particle energy density as is

discussed in the next section. Note that three damping mechanisms are equally important for TAE

stability, whereas as the calculations show at high n’s (n > 15) the radiative damping becomes

dominant and stabilizes the modes.
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Ω2 γecoll/ω(%) γiLand/ω(%) γrad/ω(%) γα/ω(%) γbeam/ω(%) γ∑/ω(%)

0.96 -0.18 -0.61 -0.43 0.82 0.71 0.31

Table I: Damping and driving growth rates of one of the most unstable n = 10 TAE in the case of 0.55m

off-axis NBI. Given also is the TAE normalized eigenfrequency.

nξ
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16 17

Figure 8: Radial mode structures of poloidal harmonic of the radial plasma displacement for one represen-

tative TAE mode with Ω2 = 0.96 in the case of 0.55m off-axis NBI.

IV. THEORY OF NBI ANISOTROPY EFFECT ON TAES

The anisotropy effect on the TAE drive has been studied for fast ions with beam-like anisotropic

distributions [24] and for fusion products such as alphas with natural anisotropy due to finite orbit

width effects [25, 26]. For simplicity let us present the calculation of the drive in case of beam ion

anisotropic distribution where there is a delta function pitch angle dependence of the form,

fb '
3βαB2

24π2Eα0v3 θ(vα0 − v)δ(χ−χ0) , (9)

where θ is the step function. Note, that in the approximation of strongly passing beam ions (i.e.

χ0 ∼ 1, which is reasonable for the tangential beam injection in ITER) χ is not changing along the

particles’s drift trajectory. For the simplicity we take a zero orbit radial width for the beam ion

trajectories. Then the growth rate for the shear Alfvén instability we have [27]

γ
ω

'− v2
Am2

bπ2

2ωR2B2Eb0

∫

d3v

[

−Ebo∂
∂E

− ω∗
ω

]

fb

(

v2
⊥
2

+ v2
‖

)2

δ
(

ω−
(

k‖±
1

qR

)

v‖

)

,
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where ω∗ is the diamagnetic frequency of beam ions. This can be integrated directly and the

expression for the growth rate reads

γ
ω

' −3πβbq2

8
v2

A

v2
b0

(

1+χ2
0

)2

χ2
0

[

3+
χ2

0
(

1+χ2
0

)2

∂
∂χ0

(

(

1−χ2
0

)(

1+χ2
0

)2

χ3
0

)

− 2v2
A

v2
b0

ω∗
χ2

0ω

]

,

which can be transformed to

γ
ω

' −3πβbq2

8
v2

A

v2
b0

(

1+χ2
0

)2

χ2
0

[

3−
(

3−2χ2
0 +3χ4

0

)

χ2
0

(

1+χ2
0

) − 2v2
A

v2
b0

ω∗
χ2

0ω

]

. (10)

Appropriate expressions can also obtained for the case where the beam orbit width is important. In

this case the above results are altered by multiplying Eq.(10) with a factor ∆b/∆m, where ∆b = qρα

is the passing beam ion orbit width, and ∆m = r2
m/msR is the TAE mode radial width scale [24].

In that case the expression for the growth rate is in a plateau regime with the respect to TAE mode

number. It follows from Eq.(10) that the growth rate increases if the injection angle decreases,

for example, if χ0 changes from χ0 = 1 to a lower value. This is confirmed by the numerical

simulations presented in the next section. Note that the additional anisotropy term (second term

in Eq.(10) is destabilizing and it considerebly reduces the stabilizing first term. For example at

χ0 = 1 the sum of the first two terms in the square brackets of Eq.(10) is smaller then the first term

by a factor 1/3 . For χ0 < 1 the anisotropy term increases faster than the first term in Eq.(10) so

that at χ0 < 0.8 it becomes larger then the first one.

V. NBI ANISOTROPY EFFECT CALCULATED FROM NOVA

The properties of the TAE instability drive due to the anisotropic beam ion distribution function

are studied with the pitch angle dependence in the form of Eq.(6) and fixed δχ2 = 0.05 for figure 9

and χ0 = 0.8 for figure 10. From Fig. 9 one can notice that the drive depends more strongly on the

injection pitch angle than on the width of the distribution. Also calculations show that the drive

is stronger for more localized modes. The instability is driven by passing particles rather than by

trapped ones for almost all modes. Hence at the perpendicular injection (with χ0 = 0) TAEs are

stable.

The effect of the anisotropy of beam ion distribution function is also computed by separating

each of the driving or damping terms of the growth rate: the ω∗ driving term (third term in square

bracket of Eq.(10)), velocity gradient stabilizing term (first term in square bracket of Eq.(10)), and

anisotropy driving term (second term in square bracket of Eq.(10)). We plot the growth rate as
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Figure 9: Pitch angle, χ0, (at fixed δχ2 = 0.05) dependence of different driving terms in the TAE growth

rate. The solid curve is for all the driving terms, whereas the dashed curve is for velocity plus spatial

gradient terms and the dot-dashed curve is for the spatial gradient term alone.
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Figure 10: The growth rate dependence versus the beam ion distribution parameter δχ2 taken for χ0 = 0.8.

a function of χ0 including (i) all terms, (ii) spacial gradient drive (ω∗ curves), and (iii) velocity

plus spacial gradient (no anisotropy curves) as indicated in figure 9. The anisotropy contribution

accounts for 30− 40% of the drive for the tangential injection χ0 ∼ 1. It becomes stabilizing for

the perpendicular injection, χ0 = 0. Surprisingly from Fig. 9 it follows that the energy derivative

alone, i.e. the anisotropy drive plus the velocity drive contribute to the destabilisation of the TAE.

This seems to contradict the result of Eq.(10), where first and second terms in square bracket relate
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to each other as −3 to 2, so that the net contribution is stabilizing. This is because the distribution

function adopted in the derivation of the analytical expression does not include the critical velocity

v∗. If it is included, which is the case for the numerical analysis, the velocity and the anisotropy

drives are related as follows −3v3/
(

v3 + v3
∗
)

to 2. So that for ITER in which v∗ ∼ vA we find that

ratio to be ∼−1.5 to 2 so that energy derivative alone is destabilizing in this case.

Since TAE excitation is due to the particle mode resonance it is expected that the instability will

be sensitive to the injection energy. Such injection energy scan is shown in figure 11. Instability

due to the beam ions is stabilized at beam energy Eb0 < 200keV . Such low energy may not be

enough to achieve the NBI goal of current drive and auxiliary heating because the beam may not

penetrate deep enough [8]
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Figure 11: NBI energy dependence of the drive of two TAE modes.

VI. RELAXATION OF FAST ION PROFILES IN MULTIPLE TAE UNSTABLE PLASMA

Finally we present a model for assessing the effect of TAE instabilities on the fast ions. In

particular we want to develop a methodology for assessing in the case of instability, whether there

is likely to be a substantial loss of energetic particles due to diffusion from the fields generated by

the TAE modes.

In Ref. [8] the critical alpha particle pressure gradient was estimated from the balance between

the energetic particle drive and the likely most important dissipative mechanisms, which were ion

Landau damping and trapped electron collisions. Indeed, it was also shown that these two damping
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mechanisms are dominant for the expected radial location of the most unstable TAEs r/a >∼ 0.5.

Equating the drive to damping terms gives,

∂βαcr

∂r
= −γiL + γecoll

γ′α
, (11)

where γα′ = γα/(∂βα/∂r). Note that the right hand side of this equation depends on the back-

ground plasma parameters and is independent of βα.

We found that when there was on-axis NBI, we could accurately fit the α-particle equilibrium

steady state beta profile calculated by the TRANSP predictive run to a beta profile of the form,

βα = 0.008
[

1− (r/a)2
]5

. In the estimations in this section the plasma ion temperature profile is

taken to be of the form Ti (keV ) = 20
[

1− (r/a)2
]

, and while the background beta is taken as,

βpc = 0.06
[

1− (r/a)2
]

. If the system is unstable (i.e. |∂βα/∂r|> |∂βαcr/∂r|), we assume that the

TAE excitation will lead to radial diffusion of alpha particles with the transport described within

the framework of a quasilinear theory.

The basic quasi-linear model is presented in the Appendix. We shall assume that the unstable

region lies within a single radial band. Alpha particle transport is expected to flatten the alphas beta

profile beyond the unstable region of linear theory and a new alpha particle beta profile βαrlx (r)

will form. To find the region to which that alpha particles spread to and βαrlx (r), we note that the

quasi-linear theoretical model predicts that the original unstable region spreads in space to satisfy

the condition, ∂βαrlx/∂r = ∂βαcr/∂r in a region r1 < r < r3 and at these interfaces, βαrlx (r1,3) =

βα (r1,3). Our task is to find r1 and r3 in accord with the procedure described in the Appendix.

There it is also shown that there will be a point r2 between r1 and r3 that satisfies βαrlx (r2) =

βα (r2). These previous assertions assume that r1 and r3 will be found to lie within the boundaries

of the plasma. Now, the original beta profile, βα (r), is determined by classical processes which

balances fusion energy production with the alpha particle drag to the plasma. In the relaxed state

the beta profile remains βα (r) outside the relaxed region, while the beta profile is at marginal

stability within the relaxed region. Hence within the relaxed region, we find βαrlx(r) = βα (r1)+
∫ r

r1
(∂βαcr/∂r′)dr′. As βαrlx (r3) = βα (r3), one of the conditions to determine the endpoints is,

βα(r3)−βα (r1) =
∫ r3

r1
(∂βαcr/∂r′)dr′. The additional condition is determined by the balance of

classical processes with the quasi-linear diffusion of quasi-linear relaxation process in the TAE

turbulent region. The Appendix indicates that applying a particle conservation condition in this

region gives a reasonable estimate for this balance. Hence the end-points of the turbulent region

is determined by the additional condition
∫ r3

r1
βα (r′)r′dr′ =

∫ r3
r1

βαrlx (r′)r′dr′. We also note that
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the actual energy density that is redistributed is smaller than the above estimate. Only a fraction,

η, of the alpha particle beta profile undergoes redistribution due to resonant interaction with TAE

modes. In Refs.o [29, 30] this fraction was estimated ad η =
(

vα0 − v‖
)

v‖/v2
α0 ≤ 0.25 for the

straight cylinder geometry, where v‖ is particle parallel velocity resonant with TAE. As a result in

the relaxation region the beta profile can be expressed as β̂α (r) = ηβαrlx (r)+(1−η)βα (r). Thus

the resulting alpha profile is given by

β̂α (r) =



















βα(r), r < r1

ηβαrlx(r)+(1−η)βα (r) , r1 < r < r3

βα(r), r > r3

. (12)

In Fig. 12 we show the result of the relaxation of the beta profile with η = 0.25. Also to

demonstrate the sensitivity to the critical beta (and thus to the damping rate model) we show in

addition an alpha particle profile obtained for the critical beta from Eq. (11) multiplied by 0.7,

which is denoted β̂α1. For the latter case alphas are found to be redistributed up to the plasma edge

with 4% losses. For figure 12 we note that the TAEs are locally unstable within 0.39 < r/a < 0.72.

After the quasi-linear transport model is applied alphas are redistributed within r1/a = 0.30 <

r/a < r3/a = 0.89 (see curve marked with β̂α) in Fig.12.

1e−5

1e−4

1e−3

1e−2

0

0.002

0.004

0.006

0.008

0.01

0.2 0.4 0.6 0.8 1
r/a

βα

>

βα1

>

βα

 

Figure 12: Alpha particle beta profiles initial and reconstructed using expressions for the local critical beta

Eq.(11). Beta profile β̂α1 is obtained with the critical beta from Eq. (11) multiplied by 0.7. All the profiles

are shown in linear and logarthmic scales.
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Stronger radial transport is expected if the thermal ion temperature is raised. This is be-

cause the fusion alpha-particle beta depends on Ti: βα/βpc = σ20.117T 5/2
i /(1+σ), where

σ ≡ (nD +nT )/ne = 0.8. Figure 13 shows the expected loss dependence with increased alpha

particle beta as the temperature was increased from a baseline case of Ti0 = 20keV , βpc0 = 6%,

and βα0 = 0.8%. Here, in one case, we fixed the plasma density (solid curve) and in another case,

the plasma beta (dashed curve), while keeping fixed r3 = a. In the case of fixed plasma density the

predicted TAE induced transport is weaker because the ion Landau damping is increasing with ion

temperature. With the constant beta, the ion temperature was varied from 20keV at βα0 = 0.8% to

∼ 24keV at βα0 = 1.3%, whereas at fixed density the corresponding temperature range was from

20keV to ∼ 23keV . We see that losses can become severe with increased temperature especially

for the fixed beta case (note that MHD considerations may limit the operational beta to a fixed

value).
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Figure 13: Expected alpha particle losses are shown as function of increased βα0 keeping fixed total plasma

beta (dashed curve, βpc +βα = const in which βα0 ∼ T 5/2
i0 ) and density (solid curve, βα0 ∼ T 7/2

i0 ).

In the calculations in this section we neglected the TAE interaction with beams assuming that

only one specie is driving the instability. It should be possible to renormalize the critical gradients

proportional to the contribution of each specie to the total drive. The model we propose needs to

be corrected by numerical calculations to account for extra damping mechanisms. More detailed

investigations can be adjusted to numerically evaluated damping and growth rates, as is obtained

in NOVA-K. Our model shows that in the case of local instability theory the TAE instability ef-
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fects allows the window of operation in ITER but will establish the high temperature limit. The

quasilinear theory applicability condition, which requires the overlap of particle resonances, must

also be considered and this is a subject of further study.

VII. DISCUSSION

We showed that NBI with tangential injection geometry is likely to destabilize TAEs in an

ITER-like plasma. With perpendicular injection and/or lower beam energy one can reduce the

TAE drive. Since the reactor plasma is supposed to be self-sustained without the beams, TAEs in a

ITER-size machine will be driven only by alpha particles. As also follows from our previous study

TAEs appear to be weakly unstable at operation where central temperatures are near 20keV . On

the other hand NBI may provide an important tool for the experimental study of different types of

AE instabilities by creating additional drive. Thus it is important to plan the NBI to be as flexible

as possible in order to be able to change the conditions of AE excitation, i.e. by changing the

geometry angle, energy, specie etc.

A quasi-linear model for alpha particle TAE induced transport has been developed. A critical

assumption of the applicability of the quasilinear calculation is that resonance overlap of the TAE

modes at the predicted level of the theory is enough to produce mode overlapping. This issue

needs to be a subject of further study. If the overlap assumption is valid, then when we account

for the growth rates from NOVA-K calculations the expected alpha particle profiles from Fig.(12)

seems reasonable. It follows that even in the pessimistic case of local instability the effect of TAEs

will be tolerable at temperatures comparable to 20keV . However, the model predicts deleterious

confinement conditions at somewhat higher central temperature (∼ 23keV ). More verification is

needed of this quasilinear model, but potentially it is an important tool for predictive codes such

as TRANSP to be used to evaluate the effects of TAE driven transport on reactor performance. In

principle one can determine the domain of plasma reactor parameters that can be achieved even

with TAE unstable modes present.
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Appendix A:

We seek a steady state solution to a 1-d model we use to describe the energetic particle relax-

ation due to the TAE instability, where the density gradient causes the universal instability drive

to be present. We use the model developed in Ref. [28]. This model considers the linear modes

to be extremely localized, but continuously spread out in space. At each radial point the diffusion

coefficient D, which is proportional to the mean square value of the field amplitude, satisfies the

evolution equation,

∂D(x, t)
∂t

−2 [γL (x, t)− γd (x)]D(x, t) = 0, (A1)

where γd is the damping rate of the mode due to background dissipation and γL is the instability

drive of the wave proportional to the radial spatial gradient of the distribution function. In this

simplified model we take,

γL (x, t) = −σ
∂ f (x, t)

∂x
, (A2)

where f is the time averaged distribution function for the energetic particles, x a normalized radial

variable and σ is a positive constant. The distribution function satisfies the quasi-linear equation

that results from the diffusion arising from the unstable spectrum and the relaxation of the energetic

particles from classical processes. The classical relaxation is taken to satisfy a simple Krook

collision operator with a relaxation rate ν and with a source present with of the form ν(x) f0 (x).

The kinetic equation for the system is:

∂ f
∂t

− ∂
∂x

D(x)
∂ f
∂x

= ν(x) ( f0 − f ) . (A3)

Clearly when D = 0, the steady solution is f = f0, and this solution can be sustained when

there is stability everywhere in space so that γd > γL ≡−σ∂ f0/∂x.

Suppose now γL > γd in a spatial interval x− < x < x+. In that case the diffusion coefficient

grows and attempts to flatten the distribution function in the unstable region. However, the flatten-

ing causes gradients to steepen at the interface between the original stable and unstable regions.

21



As a result the unstable region broadens beyond the interval between x− and x+. The final dis-

tribution is expected to have the form of Fig.14 where the relaxation band spreads out to a larger

interval. The region of relaxation stops only where the diffusion coefficient vanishes at the points

xu and xl . The distribution will be continuous at the points xu and xl so that the shape of the f0 (x0)

is such that we will have an intermediate point x0 where f (x0) = f0 (x0), as can be seen in Fig.14.

x

f

x x− x x+ xl 0 u

Figure 14: Relaxation of an initial equilibrium to the marginal stable one. Notation is explained in the text.

We now solve Eqs. (A1,A2,A3) in steady state to determine the final relaxed region. We

can choose a suitable normalization that allows us to take σ = 1. In this case we find as steady

solutions,
∂ f0

∂x
= −γL,

∂ f
∂x

= −γd , (A4)

and the relation,

∂Dγd

∂x
= −ν(x)

∫ x

x0

[

γL
(

x′
)

− γd
(

x′
)]

dx′. (A5)

Now integrating Eq. (A4) with the condition that D(x) vanishes at the end points x = xl,xu, yields

the relations,
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D(x)γd (x) = D(x0)γd (x0)−
∫ x

x0

ν
(

x′
)

∫ x′

x0

[

γL
(

x′′
)

− γd
(

x′′
)]

dx′′, (A6)

D(x0)γd (x0) =
∫ xu

x0

dx′ν
(

x′
)

∫ x′

x0

[

γL
(

x′′
)

− γd
(

x′′
)]

dx′′, (A7)

∫ xu

xl

dxν(x)
∫ x

x0

[

γL
(

x′
)

− γd
(

x′
)]

dx′ = 0. (A8)

Note that Eq. (A5) implies that D(x)γd (x) is maximum at x0, as at that point γL (x0) > γd (x0).

The points xl , x0, and xu are determined from Eqs. (A8) and the two relations,

∫ xl,u

x0

[γL (x)− γd (x)]dx = 0. (A9)

This last equation follows from the equality of f and f0 at x = xl,x0, and xu and the x-integration

of equations (A4).

As an example, consider the case where f0 has a constant slope so that γL is a constant and γd

has the form γd = γd0

[

1+a
(

x− x′0
)2
]

, with γL > γd0. The original unstable region is contained

within the band x− < x < x+, where

x± = x′0 ±
(

γL − γd0

aγd0

)1/2

. (A10)

The solutions for the end points xl , x0, and xu are found from Eqs.(A8) and (A9) to be, xu,l − x′0 =

±
(

6 γL−γd0
aγd0

)1/2
, x0 = x′0. Thus the unstable region is considerably broadened, but if this region

is within the boundaries of the plasma, the diffusion does not lead to excessive energetic particle

loss.

We observe that this theory gives a very simple way to estimate the energetic particle relaxation

due to instability, and it is readily generalized to more complicated systems. In the text we take the

radial coordinate as x = r2/2, and apply this result to the expected γL ∼ γd that arises in linearized

TAE theory.

There are several important points that are in need further investigation that is pertinent in

assessing the robustness of this procedure. One is to note that in the physical problem is in more

than one phase space dimension. As result, even in the spatially unstable region, only a fraction

of the particles that are slowing down in velocity space would have resonantly interacted with the

wave and relaxed its distribution in the manner described in this theory. Kolesnichenko [29, 30]

has estimated that in a burning plasma the fraction, η, of relaxed particles in the unstable region
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η ∼ 0.25. Another important point is that quasi-linear model that has been used is based on the

assumption that the basic TAE modes cause resonant particle-mode overlap, so that the particles

can diffuse stochastically in the unstable region. However, we see from Eq. (A7), that the diffusion

coefficient is proportional to the relatively weak classical relaxation rate ν. As result it is possible

that the mode amplitudes of the finite number of TAE modes that is predicted to be excited in a

steady state solution are not large enough to achieve the mode overlap that is needed to justify the

analysis. In this case it has been pointed out in Ref. [28] that rather than a steady behavior, bursty

behavior arises where the instantaneous mode amplitude, and hence diffusion, is much larger than

for the steady state prediction. This is an important subtle issue that will be addressed in later work.

Yet another issue is the effect of finite orbit size in a tokamak plasma and how it is enhanced by

field ripple for alpha particles near the edge. This effect is particularly important if the unstable

region is predicted to move out to near the plasma edge.
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